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Abstract

The application of evolving window factor analysis (EFA), subwindow factor analysis (SFA), iterative target transformation factor analysis
(ITTFA), alternating least squares (ALS), Gentle, automatic window factor analysis (AUTOWFA) and constrained key variable regression
(CKVR) to resolve on-flow LC-NMR data of eight compounds into individual concentration and spectral profiles is described. CKVR has
been reviewed critically and modifications are suggested to obtain improved results. A comparison is made between three single variable
selection methods namely, orthogonal projection approach (OPA), simple-to-use interactive self-modelling mixture analysis approach (SIM-
PLISMA) and simplified Borgen method (SBM). It is demonstrated that LC-NMR data can be resolved if NMR peak cluster information is
u
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. Introduction

The analytical chromatographer frequently deals with the
hromatography of mixtures, in most cases employing cou-
led chromatography. There are two fundamental approaches

o the resolution of complex mixtures, the first is to improve
hysical separations, e.g. by optimising chromatography, and

he second is to use computational methods for resolution,
s discussed in this paper. There are numerous methods of
oupled chromatography all with different characteristics
oth in terms of spectroscopy (e.g. sensitivity, selectivity)
nd chromatography (e.g. as a consequence of the detec-

ion method there may be limitations). Most chemometric
r computational methods for resolution have been applied

o liquid chromatography diode detection (LC-DAD), liq-
id chromatography mass spectrometry (LC–MS) and gas
hromatography mass spectrometry. Liquid chromatography
uclear magnetic resonance (LC-NMR) poses specific chal-

enges that many existing methods, designed for different
ystems, are unable to cope well with, especially in the limits
f resolution: this paper tackles this problem.

On-flow LC-NMR has an important role in various fie
[1–8] especially in the confirmation of chemical com
sition of mixtures. It is faster compared to the stop-fl
LC-NMR. The main disadvantage of on-flow LC-NM
is its lower sensitivity compared to many other comm
methods and so it requires higher sample concentra
which can result in column overloading and cause se
overlap of chromatographic peaks. On-flow LC-NMR d
is thus usually characterised by low signal-to-noise ra
and poorly resolved chromatographic peaks. LC-N
data can be treated as evolutionary or two-way data
two-way data each row represents a spectrum and
column represents a chromatographic or elution profile
single variable. After acquiring data, different chemome
methods can be applied to extract the required informa
In recent publications, chemometric analysis of on-fl
LC-NMR has been used for retention time measurem
[9], rank determination[10,11] and curve resolutio
[12–14].

Multivariate curve resolution (MCR) methods are a gr
of chemometric approaches suitable for multidimensi
data and their purpose is the correct determination of resp
∗ Corresponding author. Tel.: +44 117 9287658; fax: +44 117 9251295.
E-mail address: r.g.brereton@bris.ac.uk (R.G. Brereton).

profiles of individual components in time as well as in
the spectral dimension when mixtures cannot be resolved
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simply by using the instrument. The methods have been
classified in different ways[13–15] including both mod-
eling and self-modeling curve resolution (SMCR) meth-
ods [16]. Modeling methods force a specific mathemati-
cal model for example the shape of elution profile[17] or
the shape of a curve in kinetics[18]. Self-modeling meth-
ods do not demand a priori information about the spec-
tral or concentration profiles but apply natural constraints
[19] such as unimodality and non-negativity. SMCR can
further be categorised as iterative, non-iterative and hybrid
according to the algorithm used. Commonly used itera-
tive methods include iterative target transformation factor
analysis (ITTFA)[20,21], alternating least squares (ALS)
[22,23], positive matrix factorization[24] and simplex-based
methods[25]. Methods which take advantage of local rank
information and are non-iterative in nature include evolv-
ing factor analysis (EFA)[26,27], window factor analysis
(WFA) [28,29], heuristic evolving latent projections (HELP)
[30,31], subwindow factor analysis (SFA)[32,33] and par-
allel vector analysis (PVA)[34]. A third category consists
of hybrid methods like automatic window factor analy-
sis (AUTOWFA) [35], and Gentle[36]. Two new meth-
ods have specifically been reported recently for LC-NMR,
belonging to the last category, include canonical corre-
lation analysis (CCA)[12] and constrained key variable
regression (CKVR)[14]. Most multivariate methods for
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Avocado), 1,2-diethoxybenzene (VI) (98%, Lancaster),
1,4-diethoxybenzene (VII) (98%, Lancaster) and 1,3-
diethoxybenzene (VIII) (95%, Lancaster) each 50 mM. Ace-
tonitrile (HPLC grade, Rathburn Chemicals, Walkburn, UK)
and deuterated water (Goss Scientific Instruments Ltd. Great
Baddow, Essex, UK) were used as solvent in 80:20 (v/v).

2.1. Chromatography

Chromatography was performed on a Waters (Milford,
MA, USA) HPLC system, which consisted of a 717 plus
autosampler, a 600s Controller, a model 996 diode array
detector with a model 616 pump. DAD was used to visu-
alise the appearance of the first component, which triggered
the acquisition of NMR spectra. Acetonitrile (Rathburn) and
deuterated water (Goss Scientific) were used as mobile phase
in concentrations 80:20 (v/v) with flow rate 0.2 ml min−1

and injection volume 50�l. A few drops of tetramethyl-
silane (TMS) (Goss Scientific) were added as a chemi-
cal shift reference. All the compounds were eluted within
10 min.

2.2. Spectroscopy

A 4 m PEEK tube with width of 0.005 in. was used to
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egression were first reported in the context of LC-D
nd infrared spectroscopy (IR) where noise level and c
atographic resolution are not such a serious problem

hose datasets these methods have usually yielded exc
esults.

Curve resolution for LC-NMR data is a challenge to
hemometrician where most of the methods rely on a sp
ind of data structure called ’bilinear’. Bilinear structure
he data is perturbed by high levels of noise and other fa
dding non-linearity in the data. Therefore, it becomes im

ant to check the applicability of various curve resolu
ethods to data obtained with different types of instrume

n the present study we compare some of the curve
ution methods on LC-NMR and discuss CKVR in m
etail.

The different approaches are tested on data con
ng eight compounds, among which are two sets of re
somers. All the compounds elute closely thus provide
pportunity to check full potential of the curve resolut

echniques.

. Experimental

A mixture was prepared consisting of 2,6-dihydro
aphthalene (I) (98%, Avocado, Research Chemicals
eysham, UK), 2,3-dihydroxynaphthalene (II) (98%, Ac
rganics, Geel, Belgium), diethyl maleate (III) (98
vocado), methylp-toluenesulphonate (IV) (98%, La
aster, Morecambe, UK), diethyl fumarate (V) (97
t

onnect the eluent from the Waters HPLC instrument
ow cell (300�l) into the NMR probe on a 500 MHz NM
pectrometer (Jeol Alpha 500, Tokyo, Japan). For each
rum, the spectral width was 7002.8 Hz, the pulse angle◦,
cquisition time 1.1698 s and pulse delay 2 s. The digita
lution was 0.855 Hz and chromatographic resolution
.1698 s. The acetonitrile singlet resulting from solvent
uppressed by pre-saturation using a DANTE sequence[37]
contour plot with sum of spectral and concentration p

les are presented inFig. 1, where the solvent peak has be
emoved from the data and all pure LC-NMR spectra
hown inFig. 2.

ig. 1. Contour plot of whole data set with sum of spectral and concent
lots, the solvent peak was removed from the data.
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Fig. 2. Pure LC-NMR spectra of all compounds.

2.3. Software

The data analysis was performed by computer programs
written in Matlab by the authors of this paper except the
following: Fourier transformation and pre-processing of LC-
NMR data was performed by in-house written software called
LCNMR [14]. The ALS routines were obtained from the web-
site [38] maintained by Tauler and co-workers and ITTFA
and AUTOWFA from the website[39] maintained by Gem-

perline, which are part of a software called ‘GUIPRO’[40].
All of the programs were used under Matlab 6.0.

3. Data analysis

In this paper seven methods are compared namely, iterative
methods ALS and ITTFA, non-iterative methods EFA and
SFA and hybrid methods Gentle, AUTOWFA and CKVR.
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3.1. Preprocessing

Data was obtained in the time domain as free induction
decays (FIDs), its size was 256 FIDs× 8192 spectral fre-
quencies. The first FID was removed because it contained
artefacts. The remaining FIDs were apodised, Fourier trans-
formed and phase corrected[41]. In order to remove errors
due to quadrature detection, which results in regular oscilla-
tion of intensity, a moving average over every four points in
time was performed in the chromatographic direction[9]. The
chromatographic regions where no compound elutes were
truncated, which was performed by plotting a sum of all chro-
matographic profiles against time and deleting the regions by
visual inspection. Similarly, the spectral region of the sol-
vent peak and others where only noise exists were discarded
(as described in Section3.2.3.4.(b)). After preprocessing, the
data size was reduced to 142 FIDs× 1410 spectral frequen-
cies.

3.2. Curve resolution

The two-dimensional data matrix of intensity measure-
ments is denoted byX (M × N) with m as index of rows andn
as index of columns.K is the total number of chemical com-
ponents andk is the index of these components. Most of the
m iour.
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due to the laborious process of locating selective chromato-
graphic regions accurately, which is even more difficult in
LC-NMR than in LC-DAD, which is due to the much broader
and noisier chromatographic peakshape, often a consequence
of high column loading required to obtain adequate spectral
intensity.

3.2.1.1. Determination of local rank or elution windows.
There are several methods to locate the regions where each
component elutes, such as PC plots (score plots)[30,31],
evolving principal component analysis (EPCA)[42], fixed
size moving window-evolving factor analysis (FSW-EFA)
[43] and plotting concentration profiles using key variables
[11].

3.2.1.2. Resolution. Once the elution window is determined
for each compound, non-iterative curve resolution methods
can be applied. Below is a description of three of these
approaches.

Evolving factor analysis (EFA): The method was devel-
oped by Gampp at al.[26] and Maeder[27]. We use only
Maeder’s approach in this paper, which is described below.

(a) Principal component analysis (PCA)[44,45] is per-
formed on the data matrixX for K components.
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ultivariate data analysis methods require bilinear behav
athematically, a bilinear data matrix can be written as

= CS + E (1)

hereC consists of the concentration profiles,S the spec
ra of the pure components andE is an error matrix. For

component system, each measurement arises as a s
ndividual measurements, as shown in Eq.(2)

mn =
K∑

k=1

cmkskn + emn (2)

herec is the concentration ands is the spectral intensity o
ach compound at a specific frequency and unit conce

ion.
In LC-NMR there are many factors, which affect bil

arity, for example noise, temperature induced shifts o
bserved peaks and data preprocessing steps (e.g. ba
orrection and smoothing). The performance of curve
lution methods will vary according to instrument, data
oise level, noise structure and chromatographic resolu

.2.1. Non-iterative methods
These methods, also called unique resolution met

15], provide unique and true resolution when informa
rising from each component is uniquely defined ma
atically. This information may be in the form of select

oncentration regions, local rank or zero concentration
ows. Although these methods appear robust mathemat

n practice these do not necessarily yield high quality re
f

e

X = TP + E (3)

whereT is the scores matrix,P is the loadings matri
andE is the residual matrix. A rotation or transformat
matrix R (K × K) is calculated by locating zero conce
tration regions for each component.

b) An individual concentration profile is calculated by us
the rotation vector for each component

ck = Trk (4)

Steps (a) and (b) are repeated until all (K) analytes ar
resolved to give a matrixC.

(c) Spectral profiles are obtained using least squares b

S = (C′C)−1
C′X (5)

Although EFA has an excellent theoretical backgrou
n practice this method is often difficult to apply becaus
s hard to locate zero concentration windows. Most of

ethods used to locate zero concentration regions, re
sing eigenvalue-based methods (e.g. EPCA), which in
MR often predict windows that are narrower than the
indows[12,14].
Subwindow factor analysis (SFA): This method[32,33]

xtracts a spectral profile using two concentration reg
windows) where only the analyte of interest elutes.
egions are called the left and right subwindows. The d
ination of the left and right windows is made using EP
r FSW-EFA. The method is useful when the resolutio
ll compounds cannot be attained and the main interes
etermine information about a specific component.
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In addition to identifying one component without know-
ing the other components SFA has many other advantages.
The largest eigenvalue produced during the calculation is an
indicator of the quality of results, so all the results which have
lower eigenvalues, can be discarded because small eigenval-
ues suggest low correlation between spectra from the left and
right subwindows. When SFA is performed and results from
the left and right subwindows are visualised some informa-
tion can be obtained to improve results. When the boundaries
of subwindows are not very clear and an impurity peak
appears only from one subwindow then the size of that sub-
window can be adjusted to remove that peak. In this way, SFA
helps to define boundaries of each concentration profile with
more accuracy with LC-NMR data. A major disadvantage of
using SFA is that in situations when most of chromatographic
profiles severely overlap, pure spectra cannot be obtained
because left and right windows are very small.

3.2.2. Iterative methods
Iterative methods start with a set of starting profiles, one

for each compound, which are either for the concentration or
for the spectrum and then improves the initial profiles itera-
tively. In each iteration physical constraints are applied such
as unimodality, non-negativity or closure. The methods stop
when convergence is achieved. Convergence is set either by
using error functions from the residual matrix or by limit-
i ative
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a maximum is located. The first key variable corresponds to
the maximum in the first dissimilarity plot. In the second step
the average spectrum is replaced by the first reference spec-
trum corresponding to the first key variable. The second key
variable is identified by locating a maximum point in the new
dissimilarity plot, providing a second reference spectrum. In
the third and later steps reference spectra identified in the
previous steps are included in the calculations. The final dis-
similarity plot exhibits only a random pattern. The total steps
required by OPA are equal to one plus the number of com-
pounds present in a dataset. The reference spectra are the
purest possible spectra with significant signal-to-noise ratios
for each compound.

SIMPLISMA: SIMPLISMA [46] is similar to OPA in
operational details but it selects purest possible variables as
compared to the most dissimilar variables selected by OPA.
The calculations in SIMPLISMA are similar to OPA except
it utilises a ratio of standard deviation to mean intensity of
each spectrum. A factor called ‘offset’ is introduced to avoid
those variables with very low mean intensity, i.e. noise. The
method measures the purity of each spectrum, which is plot-
ted against elution time and pure variables or spectra are
selected by locating a maximum in the graph. In the first
step, there is only one spectrum in the matrix, but in the later
steps reference spectra are added to it as in OPA.

Simplified Borgen method (SBM): The SBM method
s tios.
T mpo-
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ng the number of iterations. There is a chance that iter
ethods stop in local minima or diverge and do not pro

orrect solutions.
Since iterative methods start with estimated profi

hich in turn are obtained by determining key or pure v
bles, the next section will describe some common met

or finding the pure variables.

.2.2.1. Selection of key variables. Variables which provid
oncentration or spectral profiles for single compounds
he original data, are called pure variables[46] or key vari-
bles[47,48]. Several methods for variable selection h
een reported in the literature including SIMPLISMA[46],
PA [49–54], key set and iterative key set factor analy

IKSFA) [47,48], latent projections[30] and the Simplified
orgen method (SBM)[55].
In hyphenated chromatography key variables can be f

n both directions, i.e. time as well as spectral. In favour
ases, there are characteristic resonances (pure var
or every compound in LC-NMR. In this paper we disc
nly three single variable selection approaches, OPA,
LISMA and SBM.

Orthogonal projection approach (OPA): OPA [49–54] is
stepwise approach and selects one pure or key varia

ach step. The method calculates dissimilarity based o
athematical concept of orthogonalisation[56]. The method

ompares each spectrum with one or more than one refe
pectra. The first dissimilar plot represents a comparis
ach spectrum with the average spectrum. The dissimi

s plotted against the time, to give a dissimilarity plot,
)

elects pure variables with significant signal-to-noise ra
he method assumes that the number of analytes or co
ents in the data is known. It introduces an offset factor, w

s similar to SIMPLISMA to reduce the effect of noise. SB
rst decomposes the data matrix by PCA and then norma
t so that every variable has a constant projection on the
C. The key variables are obtained by locating maximu

he norm of the normalized data. A more detailed algor
nd Matlab code is available in[55].

The SBM selects most significant vectors as comp
o the most pure vectors, which is also true for OPA, w
IMPLISMA selects pure spectra with more noise than
BM or OPA selected spectra.

.2.2.2. Resolution. Three methods are described for cu
esolution from the iterative class of methods.

Alternating least squares (ALS): There are several wa
f performing ALS, the procedure used in this paper i

ollows.

a) Perform PCA onX using Eq.(3).
b) Retain the firstK principal components (PCs), whereK

is the data rank assumed to be known.
c) Reconstruct the dataXred using the scores and loadin

matrices forK number of components.
d) Since we are comparing the three variable selection m

ods: OPA, SIMPLISMA or SBM, therefore all we
applied to obtain key variables and initial estimate
concentration or spectral profiles. In practice only
variable selection method is applied at a time. We
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suppose concentration profilesC are used as initial guess
from one of the methods.

(e) Obtain spectral profilesS under non-negativity con-
straints using non-negative least squares (NNLS)[57].

(f) Obtain concentration profilesC under non-negativity and
unimodality constraints[54].

Steps (e) and (f) are repeated until convergence, which
is measured by the residual error betweenXred and CS or
when the number of iterations is increased to a predefined
number. In our study we applied the unimodality constraint
on concentration profiles and the non-negativity constraint
on concentration and spectral profiles.

Although ALS calculations can be slow when the dataset
is large, it is simple and widely used[58–62].

Iterative target transformation factor analysis (ITTFA):
ITTFA iteratively resolves chromatographic profiles by find-
ing a suitable transformation vector. When PCA is applied to
X, as in Eq.(3), a scores matrixT and a loadings matrixP
are generated. The scores can be converted to real concentra-
tion profiles by finding a suitable rotation or transformation
matrix R

C = TR (6)

The matrixR can be estimated by generating a test profile
and then improving that profile iteratively. Different types of
t
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predicts the concentration profiles using target transformation
[20] test vectors and measures the limits of each concentra-
tion window. In the final step window factor analysis[28,29]
is applied and spectral profiles generated. The windows are
improved by locating the edges of concentration profiles with
respect to a predefined noise level and the process is repeated
until no changes in the windows limits are found. A more
detailed explanation of the method can be found in references
[35,48].

3.2.3.2. Gentle. The method involves the following steps
[36].

(a) Obtain key spectraS using a variable selection method.
(b) Obtain concentration profileC

C = XS′(SS′)−1 (7)

(c) Locate minima of eachC profile by comparing with a
preset intensity tolerance value. Remove negative parts
in concentration so that the minimum ofck after trans-
formation equals the negative of the intensity tolerance
value. The changes in concentration profiles are compen-
sated in the spectral profiles.

(d) Remove side peaks (bimodality) in the concentration pro-
files by ordinary least squares and same correction is
applied to correct spectral profiles.

ppli-
c

3
o s
f

les
con-
x
ted

( ved

( R
pear
sig-
peak

x is
est vectors have been suggested, Gemperline[20] proposed
electing test vectors by needle search[63], while Vande
inste et al.[21] proposed the use of Varimax rotation[64].
e used Gemperline’s approach of needle search wh

escribed in[20]. The stopping criteria used in the iterat
o not guarantee convergence to the optimal solution
ituations[65]. ITTFA has been used in many curve reso
ion applications as well as in kinetics[66,67].

.2.3. Hybrid methods
This is a group containing some features of both itera

nd unique resolution methods. Most methods require
arameters based on noise level, which are used to ge

er results. This feature makes these methods interactiv
equires parameter adjustments many times.

.2.3.1. Automatic window factor analysis (AUTOWFA).
indow factor analysis and evolving window factor an

sis, both self-modeling curve resolution methods, req
nformation about the zero concentration windows of e
omponent. Usually, evolving principal component anal
s used to collect this information. As this process invo

visual inspection of evolving eigenvalue plots, in forw
nd backward directions, its results can be influenced by
onal judgement. AUTOWFA was developed to overc
his problem. In the original description the number of c
onents was determined by PCA[15,16] but we applied
eedle search[63]. AUTOWFA makes use of iterative ke
et factor analysis[48] for finding pure concentration pr
les along the time axis. The uniqueness test (UNIQ)[15,16]
Gentle is a quick procedure but there are not many a
ations in the literature[68,69].

.2.3.3. Constrained key variable regression (CKVR). The
riginal procedure presented in reference[14] is described a

ollows.

(a) SBM[55] is used in CKVR to determine the key variab
equal to the rank of data, which are utilised to locate
centration profiles in data matrixX producing a matri
CSBM (M × K) and all concentration profiles are sor
according to peak maxima.

b) Negative parts of concentration profiles are remo
using as described in Section3.2.3.2.

(c) Calculate the matrix of spectral profilesS by

S = (C′C)−1
C′X (8)

d) Locate regions of the NMR peak cluster. In LC-NM
data several contiguous regions in frequency ap
where the signal-to-noise ratio is significant; we de
nate these regions “peak clusters”. The regions of
clusters are determined by the morphological score[70],
which is calculated as follows.

i. Each column in the data is mean centred

xmc
mn = xmn − x̄n (9)

wherexmc
mn is the mean centred intensity and ¯xn is

the mean of each column.The Difference matri
calculated by
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�xmn = x(m+1)n − xmn;

m = 1, 2, . . . , M − 1; n = 1, 2, . . . , N (10)

ii. The morphological score[70] is calculated by

MS =
∥∥xmc

n

∥∥
‖�xn‖ (11)

iii. The morphological score of each column is then
compared with the morphological score of the noise
level which is calculated by

MSnl =
√

χ(M − 1)Fcrit(M − 1, M − 2)

2(M − 2)
(12)

whereχ is number of points used in the moving
averageχ = 4 is used in this application because
we employ a four point moving average in the
smoothing step of the of LC-NMR data (Section
3.1). Fcrit is calculated by anF-test at a given critical
level (0.99 in our application) and (M − 1) and
(M − 2) degrees of freedom.

(e) Find the rank of each NMR peak cluster by using the
morphological score[70].

(f) Calculate the area of each profile inS within each peak
cluster region and sort these in descending order.

(
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(b) The peak cluster regions are determined by calculating
the standard deviation at each frequency[10] given below

σn =
√∑M

m=1(xmn − x̄n)2

M − 1
(15)

whereσn is the standard deviation, ¯xn is the average inten-
sity of nth column andM is the total number of the rows
in X. This process not only selects the peak clusters but
also reduces the number of variables. All variables where
the signal-to-noise ratio is significant show higher stan-
dard deviation as compared to the regions where there is
no significant signal. A cutoff value of standard deviation
can be used to select peak clusters.

(c) The rank of each peak cluster is determined by the
OPA selected concentration profiles[11] and OPA with
Durbin-Watson statistics (DW)[11,71,72].

The Durbin-Watson test assumes that the observations
and residuals follow a natural order. The residuals are
the estimates for errors assumed to be independent. If
they are not independent then the DW test checks for a
sequential dependence in which each error is correlated
with those before and after in the sequence. The DW test
is applied on the dissimilarity values (dm) generated by
OPA. The statistic (dw) is defined as

po-
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( vari-
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MR

( milar
files
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rofile
g) Least squares is performed on peak clusters by:

S̄ = (C̄′
C̄)

−1
C̄

′
X̄ (13)

hereX̄ is a reduced data matrix and contains the peak
er region,C̄ is a reduced matrix and contains concentra
rofiles equal to the rank of the peak cluster, containing

hose profiles which are sorted in step (f) andS̄ is a reduce
pectral profiles matrix and covers only those frequen
hich appear in a peak cluster region. If there arek com-
ounds present in a peak cluster, wherek ≤ K (total numbe
f compounds), having signals at frequencyn, the elution
rofiles are written as a linear combination of onlyk analytes

n a mixture:

n = c1sn1 + c2sn2 + · · · + cksnk (14)

In Eq. (14) every elution profile is expressed by a lin
ombination ofk components. One may estimate spec
oefficients using Eq.(13) and the coefficients of remainin
nalytes are set equal to zero.

.2.3.4. Modified constrained key variable regression
MCKVR). In the present work, it should be noted the s
escribed for CKVR can be performed by other method
ell. In the following section a modification of CKVR
escribed.

a) A variable selection method such as OPA is applied o
whole data matrix to get key variables and correspon
concentration profiles.
dw =
∑M

m=1(dm − dm−1)2∑M
m=1d

2
m

(16)

The dw values are plotted against the number of com
nents, the rank is determined by locating a large incr
in the dw.

d) Pure concentration profiles are obtained by using a
able selection method on spectral peak clusters
applied OPA in our study.

Steps (c) and (d) can be combined in a single st
only OPA is performed. When OPA is applied to indiv
ual peak clusters on the frequency direction, it prov
key variables, which are used to locate concentration
files in the data matrixX. The maximum number of ke
variables selected in OPA is less than or equal to the
data rank. By plotting all concentration profiles toget
it reveals not only the data rank but also information a
the purity of each variable. As most of compounds h
more than one characteristic resonance therefore,
is a good chance of finding a pure variable in LC-N
data and hence a pure concentration profile (Cpure).

e) Sometimes, two or more compounds resonate at si
frequencies, which in turn produce concentration pro
with two or more well-separated chromatographic pe
In this situation, one can set zero intensity for every p
in the second peak to obtain a pure concentration p
for the first compound and vice versa.

Spectral profiles are constructed by Eq.(8).
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Table 1
A comparison of key variables selected by three methods on mixture con-
taining eight compounds

Compound OPA (ppm) SIMPLISMA (ppm) SBM (ppm)

I 7.099 7.099 7.099
II 7.182 7.182 7.184
III 1.253 1.241 1.255
IV 2.452 2.453 2.452
V 1.279 1.279 1.279
VI 1.357 6.940 1.359
VII 6.844 6.840 1.322
VIII 1.340 1.322 1.340

4. Results and discussions

The rank analysis of this data has already been reported in
[11]. As EFA and SFA require information about local rank
and CKVR and MCKVR requires all pure concentration pro-
files, therefore, we start by finding pure concentration profiles
first, which will be used in EFA and SFA subsequently.

4.1. Determination of pure concentration profiles from
the whole data matrix

A pure concentration profile can be defined as one that has
positive intensity, is unimodal and has Gaussian peak shape
with or without tailing. Pure concentration profiles were
obtained by applying OPA (COPA), SIMPLISMA (CSIMP),
and SBM (CSBM) to the whole data matrix. The results of
these three variable selection methods are presented inTable 1
and the corresponding concentration profiles are presented in
Fig. 3. Of these profiles, I and IV are pure by all methods,
while profile VI was pure by SIMPLISMA only and profile
VII was pure by OPA and SIMPLISMA. The rest of the pro-
files (II, III, V, VIII) have bimodality and V has badly defined
peak shape in all cases. OPA provided pure concentration pro-
files for I, IV and VII, SIMPLISMA for I, IV, VI, VII and
SBM for I and IV. In total four pure and four mixed profiles
were generated by SIMPLISMA. It was observed (Table 1)

F ction
m

that SIMPLISMA selected the same variable for component
VIII as selected by SBM for compound VII. As SBM pro-
vided only two pure variables and the concentration profiles
selected by SBM (VII and VIII) and SIMPLISMA (VIII)
were not pure, OPA is selected as a method of choice for
variable selection in the next sections. Since spectral peak
clusters present data in the reduced factor space and there
are more chances to obtain unimodal concentration profiles,
therefore further exploratory analysis is performed on spec-
tral peak clusters.

4.1.1. Selection of NMR peak clusters
The determination of peak cluster regions can be auto-

mated either by calculating the standard deviation[10] or
morphological score (MS)[13] at every frequency and only
those variables, which have higher functional value than a
preset lower limit, are accepted. Both of these methods pro-
duce unsatisfactory results when data contain several spectral
peaks. These methods can be used as a first step for peak clus-
ter location and then selected regions are tuned by visual
inspection. The results of both methods are presented in
Fig. 4. The standard deviation method produced peak clus-
ter regions with good definition therefore this method was
utilised for the selection of peak cluster regions. The result
of regions selected for peak clusters is also presented inFig. 4
w peak
c

4
r

med
b ho-
l PA
a VR
m

ight
c uced
e vari-

F olog-
i lusters
a red to
t ber.
ig. 3. Concentration profiles generated by three key variable sele
ethods.
here they are designated by a bar and a number over
lusters.

.1.2. Determination of pure concentration profiles and
ank using NMR peak clusters

Rank determination of each peak cluster was perfor
y the following methods, concentration profiles by morp

ogical score (MS) according to the CKVR method or by O
nd Durbin-Watson statistics (DW) according to the MCK
ethod.
OPA was applied to the frequency dimension for e

omponents on each spectral peak cluster, which prod
ight concentration profiles corresponding to each key

ig. 4. A comparison of two peak cluster selection methods (a) morph
cal score and (b) standard deviation. The regions of separate peak c
re more clearly defined by the standard deviation method as compa

he MS method. Peak cluster regions are indicated by a line and num
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Fig. 5. Peak cluster analysis using OPA on 13 clusters. In cluster 1, compound VII is indicated by an arrow.

able. The results of OPA on the whole dataset are presented in
Fig. 3, which provides the elution time of each compound, and
on separate spectral clusters inFig. 5, where fewer than eight
concentration profiles are presented for brevity. A compari-
son ofFig. 3andFig. 5reveals the true rank of each NMR peak
cluster. The rank of each spectral peak cluster is determined
by counting the number of concentration profiles showing
different elution times. These plots also indicate the purity of
each concentration profile. Results of OPA concentration pro-
files, DW statistics and MS are presented inTable 2, where it
is clear that all methods perform well except MS. DW statis-
tics found one more compound in cluster 10, which is due
to a shift in chromatographic peak position in some of the
profiles. A further analysis ofFig. 5 reveals that every com-
pound has at least one pure profile except for compounds V

and VI, which have bimodal profiles. This kind of bimodal-
ity can be removed simply by setting zeros in the region of
the secondary peak. After removing bimodality from com-
ponents V and VI, all remaining profiles were unimodal and
Cpure is used to denote all pure concentration profiles.

4.2. Curve resolution methods

When curve resolution methods were applied, the quality
of results was assessed by comparing the peak position and
peak shapes with the pure NMR spectra of each compound.

4.2.1. Non-iterative methods
4.2.1.1. EFA. Concentration windows for each compound
were located using EPCA. Reconstructed spectral profiles
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Table 2
Rank analysis by three different methods: orthogonal projection approach
(OPA), OPA-Durbin-Watson, morphological score (MS), the cluster num-
bers are illustratedFig. 4(b)

Spectral cluster no. True rank OPA OPA-DW MS

1 5 5 5 6
2 1 1 1 2
3 1 1 1 1
4 3 3 3 3
5 2 2 2 3
6 1 1 1 2
7 1 1 1 1
8 3 3 3 4
9 1 1 1 2

10 2 2 3 2
11 1 1 1 1
12 2 2 2 2
13 1 1 1 1

using EFA are presented inFig. 6, artefacts being indicated
by a circle around the NMR peak. All profiles contain arte-
facts except compound VI, while V and VII exhibit only
minor artefacts. EFA was applied again after improving the
windows limits usingCpure but there was no improvement
in the results. Because in LC-NMR chromatographic peaks
often severely overlap, it is difficult to obtain good estimates
of concentration regions.

4.2.1.2. SFA. In the original paper on SFA[32,33] the
authors suggested using FSW-EFA for locating left and right
subwindows for each component. We have already reported
[11] that in LC-NMR, FSW-EFA does not produce good
results because the data have low signal-to-noise ratio. In
FSW-EFA a small window is created in the data matrix which
moves across the data and eigenvalues are calculated at each
step. A plot of eigenvalues against time provides evolving
behaviour of different components in the data. The window
size cannot be increased beyond a certain number of rows
otherwise evolutionary information will be lost. As a small
window in time in LC-NMR data contains a lot of noise,
therefore, good results are not expected in this application.
We utilisedCpure profiles to get information about window
limits; the first singular values produced from the left and
right subwindows are presented inTable 3for every com-
p
s rst

T
T

C

I
I
I
I
V
V
V
V

Fig. 6. Spectral profiles obtained by EFA, windows were located by EPCA;
artefacts are indicated by circles around the peaks.

eigenvalue close to 1. Although the spectra of components II
and III have a low first eigenvalue they appear pure. In the
case of NMR data, a minimum in both plots can also be used
to get the final spectrum with a risk of mixing impurity peaks
from the left and right subwindows. A close look at com-
ponents II and III reveals that these spectra consist of high
noise and distorted peak shapes. Spectra of components IV
and VIII also contain artefacts due to the very narrow subwin-
dows. Although SFA is a useful method because it helps in
the validation of results by looking at the first singular value,
it works best when subwindows are reasonably large, which
is not usual in LC-NMR. Nevertheless, five pure spectra were
obtained by SFA, which represents an improved performance
compared to EFA.
onent and the predicted spectra are shown inFig. 7. The
pectra of components I, V, VI and VII are pure with the fi

able 3
he first singular values produced by SFA for eight compounds

ompound no. First singular value

0.993
I 0.159
II 0.126
V 0.649

0.798
I 0.995
II 0.892
III 0.892
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Fig. 7. Spectral profiles obtained by SFA, windows were located byCpure,
impurity peaks are indicated by circles around the peaks.

4.2.2. Iterative methods
4.2.2.1. ALS. Initially, ALS was applied using concentration
profiles obtained from OPA (COPA), SIMPLISMA (CSIMP)
and SBM (CSBM) using the ‘average’ unimodality implemen-
tation with 1.5 tolerance value. The method converged in 14
iterations forCOPA, in 32 for CSBM but did not converge
for CSIMP after 50 iterations. Later, the method was applied
again using all pure concentration profiles (Cpure) as initial
estimates. Results were not promising and were similar to the
results obtained by EFA and are not illustrated for brevity.

4.2.2.2. ITTFA. ITTFA was performed using Gemperline’s
software GUIPRO, where the needle search is applied
to obtain chromatographic peak location and construct-
ing test vectors. The results of reconstructed spectral pro-
files were no better than the results calculated by EFA
or ALS.

4.2.3. Hybrid methods
4.2.3.1. AUTOWFA. Results obtained by AUTOWFA were
similar to the results obtained by other methods like EFA,
ALS and ITTFA. There were no improvements; all artefacts
were at the same positions.

4.2.3.2. Gentle. Results of Gentle were also similar to the
previously described methods, except there were some neg-
ative peaks, which was the result of a correction applied to
spectral profiles as produced.

4.2.3.3. CKVR. CKVR determines key variables using SBM
and then creates unimodal concentration profiles applying
Gentle routines. The pure concentration profiles generated
by CKVR are similar to those produced by Gentle (CGentle).
The results of reconstructed spectra produced by CKVR are
shown inFig. 8, where spectra of compounds VII and VIII
show artefacts. In the spectrum of compound VII there is an
artefact at 7.178 ppm indicated by a circle, while in compound

Fig. 8. Results of CKVR with original algorithm, circles indicate the regions
of artefacts.
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VIII the peak at 7.178 ppm is missing, moreover, the shape
of the peak at 1.340 ppm is not correct. These artefacts are
produced due to the poor reconstructions of concentration
profiles generated by CKVR.

4.2.3.4. MCKVR. The results of MCKVR produced using
Cpure are presented inFig. 9, where all spectra are estimated
correctly without any artefacts. All resonances are at the
correct chemical shifts and have well defined peak shapes.
In Fig. 10, a comparison is presented between theCGentle
andCpure. Other curve resolution methods (e.g. EFA, ALS,
ITTFA and AUTOWFA) also generated similar concentra-
tion profiles to those produced by Gentle. It can be observed
that almost all profiles inCGentleare poor in comparison with
theCpure, which caused the incorrect reconstructed spectra.
It should be noted that constrained key variable regression

Fig. 10. A comparison of scaled concentration profiles generated by Gentle
(×) and determined by OPA (−).

is a good approach only when all concentration profiles are
pure with good confidence of the peak shapes.

Due to high noise levels most curve resolution methods
converge to a point where incorrect concentration profiles
are generated. The only way, which appears to work for LC-
NMR data, is MCKVR, where only concentration profiles,
which are unimodal and have well defined peak shape, are
used in regression. Obviously, the use of the non-negativity
constraint is not necessary but we use it to obtain positive
spectral profiles.

5. Conclusions

The performance of CKVR for LC-NMR data requires
many steps among which are peak cluster location and rank
analysis of each peak cluster. In this paper, these procedures
were performed in semi-automatic mode and results were
confirmed by visual inspection at each stage. As selective
resonances are common in NMR, most of the pure concen-
tration profiles can be located easily in peak clusters. Pure
concentration profiles can be located by searching each peak
cluster using a suitable variable selection method. Because
SIMPLISMA selects profiles containing high noise, the use
of OPA or SBM is recommended. The few impure profiles
can be modified by removing bimodality.

es
r s by
u reli-
a low
s rou-
t pure
c R.
Fig. 9. Spectral profiles obtained by MCKVR; all profiles are pure.

M on-
c ch-
n ning
e hro-
m nce,
a y of
c esses
i In this
p on-
s ded
t the
d hich
w es of
fi data.
MCKVR involves many modifications, which includ
ank analysis and creation of pure concentration profile
sing OPA. The new modifications are simple and more
ble than the original CKVR. Since LC-NMR data has
ignal-to-noise ratio and highly overlapping peaks, the
ine of Gentle does not produce correct reconstruction of
oncentration profiles, which are implemented in CKV
CKVR and CKVR both require estimates of the pure c

entration profiles, which is the major limitation of these te
iques, which depend on a good algorithm for determi
lution profiles. However, it is not necessary to have any c
atographic information on the pure components in adva
nd properties such as unimodality and non-negativit
hromatographic profiles can be used to obtain good gu
n cases where selective resonances are not available.
aper, a successful application of MCKVR has been dem
trated for eight-compound mixture, which can be exten
o more complex mixtures. For more complex mixtures
ata can be sliced in different concentration windows, w
ill reduce the data complexity and provide more chanc
nding pure spectral variables as compared to the whole
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6. Nomenclature

C matrix of concentration profiles
d dissimilarity value in OPA
dw Durbin-Watson statistics
E residual error in a bilinear modal
K number of compounds inX
M number of rows inX
N number of columns inX
P loadings matrix
R rotation matrix
S matrix of spectral profiles
T scores matrix
x̄n mean intensity of thenth row
xmc mean centred intensity
�x difference between two intensity values in consec-

utive rows
X data matrix

Greek letters
χ number of points used in moving average
σ standard deviation of column or row indicated by

subscript
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