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Abstract

The application of evolving window factor analysis (EFA), subwindow factor analysis (SFA), iterative target transformation factor analysis
(ITTFA), alternating least squares (ALS), Gentle, automatic window factor analysis (AUTOWFA) and constrained key variable regression
(CKVR) to resolve on-flow LC-NMR data of eight compounds into individual concentration and spectral profiles is described. CKVR has
been reviewed critically and modifications are suggested to obtain improved results. A comparison is made between three single variabl
selection methods namely, orthogonal projection approach (OPA), simple-to-use interactive self-modelling mixture analysis approach (SIM-
PLISMA) and simplified Borgen method (SBM). It is demonstrated that LC-NMR data can be resolved if NMR peak cluster information is
utilised.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction On-flow LC-NMR has an important role in various fields
[1-8] especially in the confirmation of chemical compo-
The analytical chromatographer frequently deals with the sition of mixtures. It is faster compared to the stop-flow
chromatography of mixtures, in most cases employing cou- LC-NMR. The main disadvantage of on-flow LC-NMR
pled chromatography. There are two fundamental approachess its lower sensitivity compared to many other common
to the resolution of complex mixtures, the first is to improve methods and so it requires higher sample concentration,
physical separations, e.g. by optimising chromatography, andwhich can result in column overloading and cause severe
the second is to use computational methods for resolution,overlap of chromatographic peaks. On-flow LC-NMR data
as discussed in this paper. There are numerous methods ois thus usually characterised by low signal-to-noise ratios
coupled chromatography all with different characteristics and poorly resolved chromatographic peaks. LC-NMR
both in terms of spectroscopy (e.g. sensitivity, selectivity) data can be treated as evolutionary or two-way data. In
and chromatography (e.g. as a consequence of the detectwo-way data each row represents a spectrum and each
tion method there may be limitations). Most chemometric column represents a chromatographic or elution profile at a
or computational methods for resolution have been applied single variable. After acquiring data, different chemometric
to liquid chromatography diode detection (LC-DAD), lig- methods can be applied to extract the required information.
uid chromatography mass spectrometry (LC-MS) and gaslIn recent publications, chemometric analysis of on-flow
chromatography mass spectrometry. Liquid chromatographyLC-NMR has been used for retention time measurement
nuclear magnetic resonance (LC-NMR) poses specific chal-[9], rank determination[10,11] and curve resolution
lenges that many existing methods, designed for different [12—14]
systems, are unable to cope well with, especially in the limits ~ Multivariate curve resolution (MCR) methods are a group
of resolution: this paper tackles this problem. of chemometric approaches suitable for multidimensional
data andtheir purpose is the correct determination of response
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simply by using the instrument. The methods have been Avocado), 1,2-diethoxybenzene (VI) (98%, Lancaster),
classified in different way$13—15] including both mod- 1,4-diethoxybenzene (VII) (98%, Lancaster) and 1,3-
eling and self-modeling curve resolution (SMCR) meth- diethoxybenzene (VIII) (95%, Lancaster) each 50 mM. Ace-
ods [16]. Modeling methods force a specific mathemati- tonitrile (HPLC grade, Rathburn Chemicals, Walkburn, UK)
cal model for example the shape of elution profil€] or and deuterated water (Goss Scientific Instruments Ltd. Great
the shape of a curve in kineti¢$8]. Self-modeling meth-  Baddow, Essex, UK) were used as solvent in 80:20 (v/v).
ods do not demand a priori information about the spec-

tral or concentration profiles but apply natural constraints 2.7. Chromatography

[19] such as unimodality and non-negativity. SMCR can

further be categorised as iterative, non-iterative and hybrid Chromatography was performed on a Waters (Milford,
according to the algorithm used. Commonly used itera- MA, USA) HPLC system, which consisted of a 717 plus
tive methods include iterative target transformation factor autosampler, a 600s Controller, a model 996 diode array
analysis (ITTFA)[20,21] alternating least squares (ALS) detector with a model 616 pump. DAD was used to visu-
[22,23], positive matrix factorizatiofR4] and simplex-based  alise the appearance of the first component, which triggered
methodg25]. Methods which take advantage of local rank  the acquisition of NMR spectra. Acetonitrile (Rathburn) and
information and are non-iterative in nature include evolv- deuterated water (Goss Scientific) were used as mobile phase
ing factor analysis (EFA]J26,27] window factor analysis  in concentrations 80:20 (v/v) with flow rate 0.2 mlmih
(WFA) [28,29], heuristic evolving latent projections (HELP)  and injection volume 5Ql. A few drops of tetramethyl-
[30,31], subwindow factor analysis (SFA32,33]and par-  silane (TMS) (Goss Scientific) were added as a chemi-
allel vector analysis (PVA)J34]. A third category consists  cal shift reference. All the compounds were eluted within
of hybrid methods like automatic window factor analy- 10 min.

sis (AUTOWFA) [35], and Gentle[36]. Two new meth-

ods have specifically been reported recently for LC-NMR, 22 Spectroscopy

belonging to the last category, include canonical corre-

lation analysis (CCA)[12] and constrained key variable A 4m PEEK tube with width of 0.005 in. was used to
regression (CKVR)[14]. Most multivariate methods for  connect the eluent from the Waters HPLC instrument to a
regression were first reported in the context of LC-DAD fiow cell (300ul) into the NMR probe on a 500 MHz NMR
and infrared spectroscopy (IR) where noise level and chro- gpectrometer (Jeol Alpha 500, Tokyo, Japan). For each spec-
matographic resolution are not such a serious problems; inyym, the spectral width was 7002.8 Hz, the pulse angte 90
those datasets these methods have usually yielded excelledcquisition time 1.1698 s and pulse delay 2 s. The digital res-
results. olution was 0.855Hz and chromatographic resolution was
Curve resolution for LC-NMR data is a challenge to the 3 1698's. The acetonitrile singlet resulting from solvent was
chemometrician where most of the methods rely on a specialgyppressed by pre-saturation using a DANTE sequf8ide
kind of data structure called 'bilinear’. Bilinear structure in - A contour plot with sum of spectral and concentration pro-
the data is perturbed by high levels of noise and other factorsfjjes are presented fig. 1, where the solvent peak has been

add|ng non-linearityin the data. Therefore, |t becomesimpor- removed from the data and all pure LC-NMR Spectra are
tant to check the applicability of various curve resolution snown inFig. 2

methods to data obtained with different types of instruments.
In the present study we compare some of the curve reso-
lution methods on LC-NMR and discuss CKVR in more h
detail. Mo

The different approaches are tested on data contain-
ing eight compounds, among which are two sets of regio-
isomers. All the compounds elute closely thus provide an
opportunity to check full potential of the curve resolution
technigues.
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2. Experimental

A mixture was prepared consisting of 2,6-dihydroxy-
naphthalene (I) (98%, Avocado, Research Chemicals Ltd.,
Heysham, UK), 2,3-dihydroxynaphthalene (ll) (98%, Acros
Organics, Geel, Belgium), diethyl maleate (Ill) (98%,

Avocado), methylp't0|Uenesu!phonate (IV) (98%, Lan-  Fig.1. Contour plotofwhole data setwith sum of spectral and concentration
caster, Morecambe, UK), diethyl fumarate (V) (97%, nplots, the solvent peak was removed from the data.
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Fig. 2. Pure LC-NMR spectra of all compounds.
2.3. Software perline, which are part of a software called ‘GUIPR@0].

All of the programs were used under Matlab 6.0.

The data analysis was performed by computer programs
written in Matlab by the authors of this paper except the
following: Fourier transformation and pre-processing of LC- 3. Data analysis
NMR data was performed by in-house written software called
LCNMR[14]. The ALS routines were obtained from the web- In this paper seven methods are compared namely, iterative
site [38] maintained by Tauler and co-workers and ITTFA methods ALS and ITTFA, non-iterative methods EFA and
and AUTOWFA from the websitf89] maintained by Gem-  SFA and hybrid methods Gentle, AUTOWFA and CKVR.
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3.1. Preprocessing due to the laborious process of locating selective chromato-
graphic regions accurately, which is even more difficult in

Data was obtained in the time domain as free induction LC-NMR thanin LC-DAD, which is due to the much broader

decays (FIDs), its size was 256 FIR8192 spectral fre-  and noisier chromatographic peakshape, often a consequence

guencies. The first FID was removed because it containedof high column loading required to obtain adequate spectral

artefacts. The remaining FIDs were apodised, Fourier trans-intensity.

formed and phase correctédil]. In order to remove errors

due to quadrature detection, which results in regular oscilla- 3.2.1.1. Determination of local rank or elution windows.

tion of intensity, a moving average over every four points in There are several methods to locate the regions where each

time was performed in the chromatographic direcfnThe component elutes, such as PC plots (score pla8)31]

chromatographic regions where no compound elutes wereevolving principal component analysis (EPCRR], fixed

truncated, which was performed by plotting a sumof allchro- size moving window-evolving factor analysis (FSW-EFA)

matographic profiles against time and deleting the regions by [43] and plotting concentration profiles using key variables
visual inspection. Similarly, the spectral region of the sol- [11].

vent peak and others where only noise exists were discarded
(@s described in Secticd2.3.4(b)). After preprocessing, the 3 > 7 2 Resolution. Once the elution window is determined
data size was reduced to 142 FIp4410 spectral frequen-  for each compound, non-iterative curve resolution methods

cies. can be applied. Below is a description of three of these
approaches.
3.2. Curve resolution Evolving factor analysis (EFA): The method was devel-

oped by Gampp at a[26] and Maedef27]. We use only
The two-dimensional data matrix of intensity measure- Maeder’s approach in this paper, which is described below.
ments is denoted by (M x N) with m as index of rows and
as index of column<K is the total number of chemical com-
ponents and is the index of these components. Most of the
multivariate data analysis methods require bilinear behaviour. X=TP+E ©)
Mathematically, a bilinear data matrix can be written as:

(a) Principal component analysis (PCAJ4,45] is per-
formed on the data matriX for K components.

whereT is the scores matrixP is the loadings matrix
X=CS+E 1) andE is the residual matrix. A rotation or transformation
matrixR (K x K) is calculated by locating zero concen-
tration regions for each component.
Anindividual concentration profile is calculated by using
the rotation vector for each component

whereC consists of the concentration profileésthe spec-

tra of the pure components aiitlis an error matrix. For a

K component system, each measurement arises as a sum ch)
individual measurements, as shown in E2).

K c,=Trg (4)
Xmn = Z CmkSkn =+ €mn ) Steps (a) and (b) are repeated until &) @nalytes are
k=1 resolved to give a matrig.

wherec is the concentration ands the spectral intensity of ~ (€) Spectral profiles are obtained using least squares by:
each compound at a specific frequency and unit concentra- _
tion P P AHeneY s=('c)'c'x )

In LC-NMR there are many factors, which affect bilin- Although EFA has an excellent theoretical background,
earity, for example noise, temperature induced shifts of the jn practice this method is often difficult to apply because it
observed peaks and data preprocessing steps (e.g. baseling hard to locate zero concentration windows. Most of the
correction and smoothing). The performance of curve res- methods used to locate zero concentration regions, rely on
olution methods will vary according to instrument, dataset, using eigenvalue-based methods (e.g. EPCA), which in LC-
noise level, noise structure and chromatographic resolution. NMR often predict windows that are narrower than the true

windows[12,14]
3.2.1. Non-iterative methods Subwindow factor analysis (SFA): This method[32,33]

These methods, also called unique resolution methodsextracts a spectral profile using two concentration regions
[15], provide unique and true resolution when information (windows) where only the analyte of interest elutes. The
arising from each component is uniquely defined mathe- regions are called the left and right subwindows. The deter-
matically. This information may be in the form of selective mination of the left and right windows is made using EPCA
concentration regions, local rank or zero concentration win- or FSW-EFA. The method is useful when the resolution of
dows. Although these methods appear robust mathematicallyall compounds cannot be attained and the main interest is to
in practice these do not necessarily yield high quality results determine information about a specific component.
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In addition to identifying one component without know- a maximum is located. The first key variable corresponds to
ing the other components SFA has many other advantagesthe maximum in the first dissimilarity plot. In the second step
The largest eigenvalue produced during the calculation is anthe average spectrum is replaced by the first reference spec-
indicator of the quality of results, so all the results which have trum corresponding to the first key variable. The second key
lower eigenvalues, can be discarded because small eigenvalvariable is identified by locating a maximum point in the new
ues suggest low correlation between spectra from the left anddissimilarity plot, providing a second reference spectrum. In
right subwindows. When SFA is performed and results from the third and later steps reference spectra identified in the
the left and right subwindows are visualised some informa- previous steps are included in the calculations. The final dis-
tion can be obtained to improve results. When the boundariessimilarity plot exhibits only a random pattern. The total steps
of subwindows are not very clear and an impurity peak required by OPA are equal to one plus the number of com-
appears only from one subwindow then the size of that sub-pounds present in a dataset. The reference spectra are the
window can be adjusted to remove that peak. In this way, SFA purest possible spectra with significant signal-to-noise ratios
helps to define boundaries of each concentration profile with for each compound.
more accuracy with LC-NMR data. A major disadvantage of ~ SIMPLISMA: SIMPLISMA [46] is similar to OPA in
using SFA is that in situations when most of chromatographic operational details but it selects purest possible variables as
profiles severely overlap, pure spectra cannot be obtainedcompared to the most dissimilar variables selected by OPA.

because left and right windows are very small. The calculations in SIMPLISMA are similar to OPA except
it utilises a ratio of standard deviation to mean intensity of
3.2.2. Iterative methods each spectrum. A factor called ‘offset’ is introduced to avoid

Iterative methods start with a set of starting profiles, one those variables with very low mean intensity, i.e. noise. The
for each compound, which are either for the concentration or method measures the purity of each spectrum, which is plot-
for the spectrum and then improves the initial profiles itera- ted against elution time and pure variables or spectra are
tively. In each iteration physical constraints are applied such selected by locating a maximum in the graph. In the first
as unimodality, non-negativity or closure. The methods stop step, there is only one spectrum in the matrix, but in the later
when convergence is achieved. Convergence is set either bysteps reference spectra are added to it as in OPA.
using error functions from the residual matrix or by limit- Simplified Borgen method (SBM): The SBM method
ing the number of iterations. There is a chance that iterative selects pure variables with significant signal-to-noise ratios.
methods stop in local minima or diverge and do not provide The method assumes that the number of analytes or compo-
correct solutions. nentsinthe datais known. Itintroduces an offset factor, which

Since iterative methods start with estimated profiles, is similar to SIMPLISMA to reduce the effect of noise. SBM
which in turn are obtained by determining key or pure vari- firstdecomposes the data matrix by PCA and then normalizes
ables, the next section will describe some common methodsit so that every variable has a constant projection on the first
for finding the pure variables. PC. The key variables are obtained by locating maximum in

the norm of the normalized data. A more detailed algorithm
3.2.2.1. Selection of key variables. Variables which provide  and Matlab code is available [B5].
concentration or spectral profiles for single compounds from  The SBM selects most significant vectors as compared
the original data, are called pure variabJé8] or key vari- to the most pure vectors, which is also true for OPA, while
ables[47,48] Several methods for variable selection have SIMPLISMA selects pure spectra with more noise than the
been reported in the literature including SIMPLISNW6], SBM or OPA selected spectra.
OPA [49-54] key set and iterative key set factor analysis

(IKSFA) [47,48] latent projection$30] and the Simplified 35 5 > Resolution. Three methods are described for curve
Borgen method (SBMJGS5). _ resolution from the iterative class of methods.
In hyphenated chromatography key variables canbefound  4yernating least squares (ALS): There are several ways

in both directions, i.e. time as well as spectral. In favourable ¢ performing ALS, the procedure used in this paper is as
cases, there are characteristic resonances (pure variableg})iows.

for every compound in LC-NMR. In this paper we discuss

only three single variable selection approaches, OPA, SIM-(a) Perform PCA oiX using Eq(3).

PLISMA and SBM. (b) Retain the firsk principal components (PCs), wheke
Orthogonal projection approach (OPA): OPA [49-54]is is the data rank assumed to be known.

a stepwise approach and selects one pure or key variable iffc) Reconstruct the daféeq using the scores and loadings

each step. The method calculates dissimilarity based on the  matrices fork number of components.

mathematical concept of orthogonalisatj66]. The method  (d) Since we are comparing the three variable selection meth-

compares each spectrum with one or more than one reference ods: OPA, SIMPLISMA or SBM, therefore all were

spectra. The first dissimilar plot represents a comparison of  applied to obtain key variables and initial estimates of

each spectrum with the average spectrum. The dissimilarity =~ concentration or spectral profiles. In practice only one

is plotted against the time, to give a dissimilarity plot, and variable selection method is applied at a time. We will
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suppose concentration profil€sare used as initial guess  predicts the concentration profiles using target transformation

from one of the methods. [20] test vectors and measures the limits of each concentra-
(e) Obtain spectral profile§ under non-negativity con-  tion window. In the final step window factor analy§28,29]

straints using non-negative least squares (NNB3). is applied and spectral profiles generated. The windows are
() Obtain concentration profil&S under non-negativity and  improved by locating the edges of concentration profiles with

unimodality constraintfb4]. respect to a predefined noise level and the process is repeated

until no changes in the windows limits are found. A more
detailed explanation of the method can be found in references
[35,48]

Steps (e) and (f) are repeated until convergence, which
is measured by the residual error betwégpy and CS or
when the number of iterations is increased to a predefined
number. In our study we applied the unimodality constraint . .
on concentration profiles and the non-negativity constraint [33§3]3 2. Gentle. The method involves the following steps
on concentration and spectral profiles. :

Although ALS calculations can be slow when the dataset (a) Obtain key spectr$ using a variable selection method.

is large, it is simple and widely us¢88-62] (b) Obtain concentration profil€
Iterative target transformation factor analysis (ITTFA): .
ITTFA iteratively resolves chromatographic profiles by find- C =XS'(sS") (1)

ing a suitable transformation vector. When PCA is applied to
X, as in Eq.(3), a scores matrif and a loadings matri®

are generated. The scores can be converted to real concentra-
tion profiles by finding a suitable rotation or transformation

(c) Locate minima of eaclt’ profile by comparing with a
preset intensity tolerance value. Remove negative parts
in concentration so that the minimum gf after trans-
formation equals the negative of the intensity tolerance

matrix R ; . .
value. The changes in concentration profiles are compen-
C=TR (6) sated in the spectral profiles.
(d) Remove side peaks (bimodality) inthe concentration pro-
The matrixk can be estimated by generating atest profile fjles py ordinary least squares and same correction is
and then improving that profile iteratively. Different types of applied to correct spectral profiles.
test vectors have been suggested, Gempdidjproposed
selecting test vectors by needle seaf68], while Vande- Gentle is a quick procedure but there are not many appli-
ginste et al[21] proposed the use of Varimax rotatifé]. cations in the literaturf68,69]

We used Gemperline’s approach of needle search which is

described if20]. The stopping criteria used in the iteration 3.2.3.3. Constrained key variable regression (CKVR). The
do not guarantee convergence to the optimal solution in all original procedure presented in referefib4] is described as
situationg[65]. ITTFA has been used in many curve resolu- follows.

tion applications as well as in kinetigs6,67} (a) SBM[55]is used in CKVR to determine the key variables
equal to the rank of data, which are utilised to locate con-
centration profiles in data matriX producing a matrix
Csem (M x K) and all concentration profiles are sorted
according to peak maxima.

Negative parts of concentration profiles are removed
using as described in Secti@rR.3.2

(c) Calculate the matrix of spectral profil&dy

3.2.3. Hybrid methods

This is a group containing some features of both iterative
and unique resolution methods. Most methods require some
parameters based on noise level, which are used to get bet b)
ter results. This feature makes these methods interactive ané
requires parameter adjustments many times.

3.2.3.1. Automatic window factor analysis (AUTOWFA). S = (C’C)flC’X (8)
Window factor analysis and evolving window factor anal- ]

ysis, both self-modeling curve resolution methods, require (d) Locate regions of _the NMR p_eak (_:Iuster. In LC-NMR
information about the zero concentration windows of each data several contiguous regions in frequency appear

component. Usually, evolving principal component analysis ~ Where the signal-to-noise ratio is significant; we desig-
is used to collect this information. As this process involves nate these regions “peak clusters”. The regions of peak

a visual inspection of evolving eigenvalue plots, in forward clusters are determined by the morphological s¢a0g,
and backward directions, its results can be influenced by per- ~ Which is calculated as follows.
sonal judgement. AUTOWFA was developed to overcome i. Each column in the data is mean centred

this problem. In the original description the number of com- T (9)
. . mn — vmn n
ponents was determined by PJA5,16] but we applied
needle searcf63]. AUTOWFA makes use of iterative key wherex is the mean centred intensity angl is
set factor analysi§48] for finding pure concentration pro- the mean of each column.The Difference matrix is

files along the time axis. The uniqueness test (UNK3)16] calculated by
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AXmn = X(m+Ln — Xmns

m=12,.. . M—1, n=12...,N (10)
ii. The morphological scorfrQ] is calculated by

mc
2]

MS =
[l Ax |

11

iii. The morphological score of each column is then
compared with the morphological score of the noise

level which is calculated by

_ X(M - 1)Fcrit(M -1 M- 2)
MSn = \/ 2(M — 2)

(12)

where x is number of points used in the moving
averagey =4 is used in this application because
we employ a four point moving average in the
smoothing step of the of LC-NMR data (Section
3.1). F¢it is calculated by affi-test at a given critical
level (0.99 in our application) andM{— 1) and
(M — 2) degrees of freedom.

(e) Find the rank of each NMR peak cluster by using the

morphological scorgr0].
(f) Calculate the area of each profileSrwithin each peak
cluster region and sort these in descending order.
(g) Leastsquares is performed on peak clusters by:

s=(c)'cx (13)

whereX is a reduced data matrix and contains the peak clus-
ter region,C is a reduced matrix and contains concentration
profiles equal to the rank of the peak cluster, containing first

those profiles which are sorted in step (f) &b a reduced

spectral profiles matrix and covers only those frequencies,

which appear in a peak cluster region. If there amom-
pounds present in a peak cluster, whiereK (total number
of compounds), having signals at frequengythe elution
profiles are written as a linear combination of ohlgnalytes
in a mixture:

Xp = €1Sp1 + €28p2 + + -+ + CkSnk (14)

In Eq. (14) every elution profile is expressed by a linear
combination ofk components. One may estimate spectral

coefficients using Eq13) and the coefficients of remaining
analytes are set equal to zero.

3.2.3.4. Modified constrained key variable regression

(MCKVR). In the present work, it should be noted the steps
described for CKVR can be performed by other methods as

well. In the following section a modification of CKVR is
described.

(a) Avariable selection method such as OPAis applied on the
whole data matrix to get key variables and corresponding

concentration profiles.

(b) The peak cluster regions are determined by calculating

the standard deviation at each frequefi®] given below

M —\2
o, = \/Zm:l]f;m_nl_ xn) (15)

whereo, is the standard deviation, is the average inten-
sity of nth column andVf is the total number of the rows

in X. This process not only selects the peak clusters but
also reduces the number of variables. All variables where
the signal-to-noise ratio is significant show higher stan-
dard deviation as compared to the regions where there is
no significant signal. A cutoff value of standard deviation
can be used to select peak clusters.

The rank of each peak cluster is determined by the
OPA selected concentration profilgsl] and OPA with
Durbin-Watson statistics (DW)11,71,72]

The Durbin-Watson test assumes that the observations
and residuals follow a natural order. The residuals are
the estimates for errors assumed to be independent. If
they are not independent then the DW test checks for a
sequential dependence in which each error is correlated
with those before and after in the sequence. The DW test
is applied on the dissimilarity valueg,{) generated by
OPA. The statistic (dw) is defined as

an/[:l(dm - m—l)2
M
Zm:ldr%

The dw values are plotted against the number of compo-
nents, the rank is determined by locating a large increase
in the dw.

Pure concentration profiles are obtained by using a vari-
able selection method on spectral peak clusters: we
applied OPA in our study.

Steps (c) and (d) can be combined in a single step if
only OPA is performed. When OPA is applied to individ-
ual peak clusters on the frequency direction, it provides
key variables, which are used to locate concentration pro-
files in the data matriX. The maximum number of key
variables selected in OPA is less than or equal to the total
data rank. By plotting all concentration profiles together,
it reveals not only the data rank but also information about
the purity of each variable. As most of compounds have
more than one characteristic resonance therefore, there
is a good chance of finding a pure variable in LC-NMR
data and hence a pure concentration proilg ).

dw = (16)

(e) Sometimes, two or more compounds resonate at similar

frequencies, which in turn produce concentration profiles
with two or more well-separated chromatographic peaks.
In this situation, one can set zero intensity for every point
in the second peak to obtain a pure concentration profile
for the first compound and vice versa.

Spectral profiles are constructed by E&).
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Table 1 that SIMPLISMA selected the same variable for component
A comparison of key variables selected by three methods on mixture con- y/|| as selected by SBM for compound VII. As SBM pro-
taining eight compounds vided only two pure variables and the concentration profiles
Compound  OPA(ppm)  SIMPLISMA(ppm)  SBM (ppm)  gelected by SBM (VII and VIII) and SIMPLISMA (VIII)

[ 7.099 7.099 7.099 were not pure, OPA is selected as a method of choice for
I 7.182 7.182 7.184 variable selection in the next sections. Since spectral peak
:{'/ ;iiﬁ ;:i‘éé ;ig‘;’ clusters present data in the reduced factor space and there
v 1.279 1.279 1.279 are more chances to obtain unimodal concentration profiles,
VI 1.357 6.940 1.359 therefore further exploratory analysis is performed on spec-
Vil 6.844 6.840 1322 tral peak clusters.

VI 1.340 1.322 1.340

. . 4.1.1. Selection of NMR peak clusters
4. Results and discussions The determination of peak cluster regions can be auto-
) ) . mated either by calculating the standard devia{ibd] or
The rank analysis of this Qatg has alrgady been reported Nmorphological score (MS)L3] at every frequency and only
[11]. As EFA and SFA require information about local rank  ,,qe variables, which have higher functional value than a
and CKVR and MCKVR requires all pure concentration pro- o reset jower limit, are accepted. Both of these methods pro-
files, therefore, we startby finding pure concentration profiles e ynsatisfactory results when data contain several spectral

first, which will be used in EFA and SFA subsequently. peaks. These methods can be used as a first step for peak clus-
o ) ter location and then selected regions are tuned by visual

4.1. Determination of pure concentration profiles from inspection. The results of both methods are presented in

the whole data matrix Fig. 4 The standard deviation method produced peak clus-

) i ) ter regions with good definition therefore this method was
A pure concentration profile can be defined as one thathas jjised for the selection of peak cluster regions. The result
positive intensity, is unimodal and has Gaussian peak shape,s regions selected for peak clusters is also presentéigir

with or without tailing. Pure concentration profiles were | poro they are designated by a bar and a number over peak
obtained by applying OPAGopa), SIMPLISMA (Csivp), clusters.

and SBM (sgm) to the whole data matrix. The results of

these three varlable'selectlon methOdS arg preserifedla 1 . 4.1.2. Determination of pure concentration profiles and

and the corresponding concentration profiles are presented in ; '
. . rank using NMR peak clusters

Fig. 3 Of these profiles, | and IV are pure by all methods,

while profile VI was pure by SIMPLISMA only and profile Rank determination of each peak cluster was performed

by the following methods, concentration profiles by morpho-
Vil was pure by OPA and SIMPLISMA. The rest of the pro- logical score (MS) according to the CKVR method or by OPA

files (11, 111, VZ Viily have blmodallty'and Vhas badly defl'ned and Durbin-Watson statistics (DW) according to the MCKVR
peak shape in all cases. OPA provided pure concentration pro-

files for I, IV and VII, SIMPLISMA for I, IV, VI, VII and method.

_ : OPA was applied to the frequency dimension for eight
SBM for | and IV. In total four pure and four mixed profiles :
t h tral k cluster, which produced
were generated by SIMPLISMA. It was observédlfle 1 components oh each spectral peak cllister, which produce

eight concentration profiles corresponding to each key vari-

Copal I IV V Vi VI VIl
% Pt ral Py 12

P 8
o
= 4

7 5 3 1
(a) Chemical Shift (ppm)

5
6 x10 |

< 2
8 4 613 51 }‘1
52 —,3 2
S JLM.A u . hﬂ [t '

7 5 3 1
(b) Chemical Shift (ppm)

time(min) Fig. 4. A comparison of two peak cluster selection methods (a) morpholog-

ical score and (b) standard deviation. The regions of separate peak clusters

Fig. 3. Concentration profiles generated by three key variable selection are more clearly defined by the standard deviation method as compared to
methods. the MS method. Peak cluster regions are indicated by a line and number.
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1 1] \" \ VI VIl 8
2 v 9
s i

3 v 10 Il Vil

Vi Vi Vil 11 v

7 Vil time (min)

|
T

time (min)

Fig. 5. Peak cluster analysis using OPA on 13 clusters. In cluster 1, compound VIl is indicated by an arrow.

able. The results of OPA on the whole dataset are presented irand VI, which have bimodal profiles. This kind of bimodal-
Fig. 3, which provides the elution time of each compound, and ity can be removed simply by setting zeros in the region of
on separate spectral clustersig. 5 where fewer than eight  the secondary peak. After removing bimodality from com-
concentration profiles are presented for brevity. A compari- ponents V and VI, all remaining profiles were unimodal and
son ofFig. 3andFig. Srevealsthe true rank of eachNMR peak  Cpyreis used to denote all pure concentration profiles.
cluster. The rank of each spectral peak cluster is determined

by counting the number of concentration profiles showing 4.2. Curve resolution methods

different elution times. These plots also indicate the purity of

each concentration profile. Results of OPA concentration pro- ~ When curve resolution methods were applied, the quality
files, DW statistics and MS are presentedatble 2 where it of results was assessed by comparing the peak position and
is clear that all methods perform well except MS. DW statis- peak shapes with the pure NMR spectra of each compound.
tics found one more compound in cluster 10, which is due

to a shift in chromatographic peak position in some of the 4.2.1. Non-iterative methods

profiles. A further analysis dfig. Sreveals that every com-  4.2.1.1. EFA. Concentration windows for each compound
pound has at least one pure profile except for compounds Vwere located using EPCA. Reconstructed spectral profiles
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Table 2 |

Rank analysis by three different methods: orthogonal projection approach

(OPA), OPA-Durbin-Watson, morphological score (MS), the cluster num-

bers are illustrate#ig. 4(b) o ;
7 6

Spectral cluster no. True rank OPA OPA-DW MS
1 5 5 5 6 ! w
2 1 1 1 2 j\
3 1 1 1 1 ] i
4 3 3 3 3 D 5 Sw—__ 3 | 2 b
5 2 2 2 3
6 1 1 1 2 o
7 1 1 1 1
8 3 33 e, S M D K
9 1 1 1 2 A ' ; ' : ! :
10 5 5 3 5 7 6 5 4 3 2 1
11 1 1 1 1
12 2 2 2 2 v ﬂ
13 1 1 1 1

Ah @ ‘ J\T j , J( , \fk,
using EFA are presented Fig. 6, artefacts being indicated ¥ 9 s\ 3 - U
by a circle around the NMR peak. All profiles contain arte-
facts except compound VI, while V and VII exhibit only
minor artefacts. EFA was applied again after improving the A ‘h
windows limits usingCpure but there was no improvement s A T = Q T Q-z '
in the results. Because in LC-NMR chromatographic peaks
often severely overlap, it is difficult to obtain good estimates vi
of concentration regions. )l fL

-v-'r““ T T T T T 1

4.2.1.2. SFA. In the original paper on SFA32,33] the 4 6 ° ¢ 8 2
authors suggested using FSW-EFA for locating left and right v
subwindows for each component. We have already reported L Jt l
[11] that in LC-NMR, FSW-EFA does not produce good ; O ; : , ;
results because the data have low signal-to-noise ratio. In 7 6 5 4 3 2 1

FSW-EFA a small window is created in the data matrix which
moves across the data and eigenvalues are calculated at eac

step. A plot of eigenvalues against time provides evolving Amm j\

behaviour of different components in the data. The window 7 6 ‘ ' : ; '
size cannot be increased beyond a certain number of rows
otherwise evolutionary information will be lost. As a small
window in time in LC-NMR data contains a lot of noise, Fig. 6. Spectral profiles obtained by EFA, windows were located by EPCA;
therefore, good results are not expected in this application. artefacts are indicated by circles around the peaks.

We utilisedCpyre profiles to get information about window
limits; the first singular values produced from the left and
right subwindows are presented Table 3for every com-
ponent and the predicted spectra are showRiin 7. The
spectra of components I, V, VI and VIl are pure with the first

5 4 3 2 1
chemical shift (ppm)

eigenvalue close to 1. Although the spectra of components I

and Il have a low first eigenvalue they appear pure. In the

case of NMR data, a minimum in both plots can also be used

T to get the final spectrum with a risk of mixing impurity peaks
able 3 . .

The first singular values produced by SFA for eight compounds from the left and ”ght subwindows. A close IOOk_at Com'

ponents Il and Ill reveals that these spectra consist of high

Compound no. First singular value noise and distorted peak shapes. Spectra of components IV
:I gl'fg;’ and VIIl also contain artefacts due to the very narrow subwin-
m 0.126 dows. Although SFA is a useful method because it helps in
v 0.649 the validation of results by looking at the first singular value,

\ 0.798 it works best when subwindows are reasonably large, which
Vi 0.995 is not usual in LC-NMR. Nevertheless, five pure spectra were
x::l 8:33; obtained by SFA, which represents an improved performance

compared to EFA.



7 6 5 4 3 2 1
I i
7 6 5 4 3 2 1

v )L
JOPRD | | N S W U |
7 6 5 4 3 2 1

V.-. ﬂ‘

L |

AP . : b—t : . .
7 6 5 4 3 2 1

Vi 'L
PO S o

7 6 5 4 3 2 1

Vil Jt
7 6 5 4 3 2 1

Vil k
?E 6 5 4 3 2 1

chemical shift (ppm)

Fig. 7. Spectral profiles obtained by SFA, windows were located fye,
impurity peaks are indicated by circles around the peaks.

4.2.2. Iterative methods

4.2.2.1. ALS. Initially, ALS was applied using concentration
profiles obtained from OPA(ppa), SIMPLISMA (Csimp)

and SBM (Csgwm) using the ‘average’ unimodality implemen-
tation with 1.5 tolerance value. The method converged in 14
iterations forCopa, in 32 for Csgm but did not converge

for Cs)vp after 50 iterations. Later, the method was applied
again using all pure concentration profil&&re) as initial
estimates. Results were not promising and were similar to the
results obtained by EFA and are not illustrated for brevity.

4.2.2.2. ITTFA. ITTFA was performed using Gemperline’s
software GUIPRO, where the needle search is applied
to obtain chromatographic peak location and construct-
ing test vectors. The results of reconstructed spectral pro-
files were no better than the results calculated by EFA
or ALS.

M. Wasim, R.G. Brereton / J. Chromatogr. A 1096 (2005) 2—15

4.2.3. Hybrid methods

4.2.3.1. AUTOWFA. Results obtained by AUTOWFA were
similar to the results obtained by other methods like EFA,
ALS and ITTFA. There were no improvements; all artefacts
were at the same positions.

4.2.3.2. Gentle. Results of Gentle were also similar to the
previously described methods, except there were some neg-
ative peaks, which was the result of a correction applied to
spectral profiles as produced.

4.2.3.3. CKVR. CKVR determineskey variablesusing SBM
and then creates unimodal concentration profiles applying
Gentle routines. The pure concentration profiles generated
by CKVR are similar to those produced by Gentlgstnie.

The results of reconstructed spectra produced by CKVR are
shown inFig. 8 where spectra of compounds VIl and VIl
show artefacts. In the spectrum of compound VIl there is an
artefactat 7.178 ppmindicated by a circle, while in compound

M

1 M
7 6 5 4 3 2 1
1 K
i B . . .
7 6 5 4 3 2 1
Vi l\
7 6 5 4 3 2 1
V'
N R |
7 6 5 4 3 2 1
Vi J
P B o
T 6 5 4 3 2 1
Vi
! f
N : ) ; ; : :
7 6 5 4 3 2 1

Vil

5 4
chemical shift (ppm)

D

Fig. 8. Results of CKVR with original algorithm, circles indicate the regions
of artefacts.
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VIl the peak at 7.178 ppm is missing, moreover, the shape f'\
of the peak at 1.340 ppm is not correct. These artefacts are

_ | YA
roduced due to the poor reconstructions of concentration g, B ‘ #
6 8

profiles generated by CKVR.
time (min)

4.2.3.4. MCKVR. The results of MCKVR produced using

Cpureare presented iRig. 9, where all spectra are estimated  Fig. 10. A comparison of scaled concentration profiles generated by Gentle

correctly without any artefacts. All resonances are at the (x) and determined by OPA).

correct chemical shifts and have well defined peak shapes.

In Fig. 10 a comparison is presented between €hgnie is a gopd approach'only when all concentration profiles are
andCpyre Other curve resolution methods (e.g. EFA, ALS, Pure with good confidence of the peak shapes.
ITTFA and AUTOWFA) also generated similar concentra- Due to high noise levels most curve resolution methods

tion profiles to those produced by Gentle. It can be observedCOnverge to a point where incorrect concentration profiles
that almost all profiles i€gengeare poor in comparison with ~ areé generatgd. The only way, which appears to work fo_r LC-
the Cpure, Which caused the incorrect reconstructed spectra. NMR data, is MCKVR, where only concentration profiles,

It should be noted that constrained key variable regressionWhich are unimodal and have well defined peak shape, are
used in regression. Obviously, the use of the non-negativity

constraint is not necessary but we use it to obtain positive

I Jt M spectral profiles.

5. Conclusions

A M The performance of CKVR for LC-NMR data requires
many steps among which are peak cluster location and rank
7 6 5 4 3 2 1 analysis of each peak cluster. In this paper, these procedures
were performed in semi-automatic mode and results were
i confirmed by visual inspection at each stage. As selective
J{ resonances are common in NMR, most of the pure concen-
tration profiles can be located easily in peak clusters. Pure
concentration profiles can be located by searching each peak
v cluster using a suitable variable selection method. Because
L K SIMPLISMA selects profiles containing high noise, the use
A4 of OPA or SBM is recommended. The few impure profiles
can be modified by removing bimodality.
MCKVR involves many modifications, which includes
rank analysis and creation of pure concentration profiles by
Jl using OPA. The new modifications are simple and more reli-
Z 5 5 4 3 2 B able than the original CKVR. Since LC-NMR data has low
signal-to-noise ratio and highly overlapping peaks, the rou-
Vi FL tine of Gentle does not produce correct reconstruction of pure

concentration profiles, which are implemented in CKVR.
. . MCKVR and CKVR both require estimates of the pure con-
3 2 1 centration profiles, which is the major limitation of these tech-
Vil niques, which depend on a good algorithm for determining
elution profiles. However, itis not necessary to have any chro-
j .l matographic information on the pure components in advance,
7 6 5 4 3 2 1 and properties such as unimodality and non-negativity of
chromatographic profiles can be used to obtain good guesses
in cases where selective resonances are not available. In this
paper, a successful application of MCKVR has been demon-
. M A strated for eight-compound mixture, which can be extended
7 5 5 4 3 2 1 to more complex mixtures. For more complex mixtures the
chemical shift (ppm) data can be sliced in different concentration windows, which
will reduce the data complexity and provide more chances of
Fig. 9. Spectral profiles obtained by MCKVR; all profiles are pure. finding pure spectral variables as compared to the whole data.

=g
Sl -

Vil
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6. Nomenclature

a

matrix of concentration profiles
dissimilarity value in OPA
Durbin-Watson statistics
residual error in a bilinear modal
number of compounds ik
number of rows ink

number of columns iX

loadings matrix

rotation matrix

matrix of spectral profiles
scores matrix

mean intensity of thath row
mean centred intensity
difference between two intensity values in consec-
utive rows

data matrix

o
=

HENURYZE XD

>
=

X

Greek letters

X number of points used in moving average

o standard deviation of column or row indicated by
subscript

Acknowledgements

M.W. wishes to thank the Ministry of Science and Tech-
nology, Government of Pakistan for providing Ph.D. grant
and the support of PAEC, Pakistan. Both authors are thank-
ful to R. Tauler and P. Gemperline for their software. We also
thank Drs. C.Y. Airiau and Dr. M. Murray for their help with
the experimental work.

References

[1] M.V.S. Elipe, Anal. Chim. Acta 497 (2003) 1.

[2] K. Albert (Ed.), On-line HPLC-NMR and Related Techniques, Wiley,
Chichester, 2002.

[3] J.-L. Wolfender, K. Ndjoko, K. Hostettmann, J. Chromatogr. A 1000
(2003) 437.

[4] F.C. Stintzing, J. Conrad, I. Klaiber, U. Beifuss, R. Carle, Phyto-
chemistry 65 (2004) 415.

[5] K. lwasa, A. Kuribayashi, M. Sugiura, M. Moriyasu, D.U. Lee, W.
Wiegrebe, Phytochemistry 64 (2003) 1229.

[6] J.-L. Wolfender, S. Rodriguez, K. Hostettmann, J. Chromatogr. A
794 (1998) 299.

[7]1 A.M. Gil, I.F. Duarte, M. Godejohann, U. Braumann, M. Maraschin,
M. Spraul, Anal. Chim. Acta 488 (2003) 35.

[8] E. Bezemer, S. Rutan, Anal. Chim. Acta 459 (2002) 277.

[9] M. Wasim, M.S. Hassan, R.G. Brereton, Analyst 128 (2003) 1082.

[10] C.Y. Airiau, H. Shen, R.G. Brereton, Anal. Chim. Acta 447 (2001)
199.

[11] M. Wasim, R.G. Brereton, Chemom. Intell. Lab. Syst. 72 (2004)
133.

[12] H. Shen, C.Y. Airiau, R.G. Brereton, Chemom. Intell. Lab. Syst. 62
(2002) 61.

[13] H. Shen, C.Y. Airiau, R.G. Brereton, J. Chemom. 16 (2002) 165.

[14] H. Shen, C.Y. Airiau, R.G. Brereton, J. Chemom. 16 (2002) 469.

M. Wasim, R.G. Brereton / J. Chromatogr. A 1096 (2005) 2—-15

[15] J.-H. Jiang, Y. Liang, Y. Ozaki, Chemom. Intell. Lab. Syst. 71 (2004)
1.

[16] E.R. Malinowski, Factor Analysis in Chemistry, third ed., Wiley,
New York, 2002.

[17] S.D. Frans, M.L. McConnel, J.M. Harris, Anal. Chem. 57 (1985)
1552.

[18] F.J. Knorr, J.M. Harris, Anal. Chem. 53 (1981) 272.

[19] A.K. Smilde, H.C.J. Hoefsloot, H.A.L. Kiers, S. Bijlsma, H.F.M.
Boelens, J. Chemom. 15 (2001) 405.

[20] P.J. Gemperline, J. Chem. Inf. Comput. Sci. 24 (1984) 206.

[21] B.G.M. Vandeginste, W. Derks, G. Kateman, Anal. Chim. Acta 173
(1985) 253.

[22] E.J. Karjalainen, Chemom. Intell. Lab. Syst. 7 (1989) 31.

[23] R. Tauler, E. Casassas, Chemom. Intell. Lab. Syst. 14 (1992) 305.

[24] P. Paatero, Chemom. Intell. Lab. Syst. 37 (1997) 23.

[25] J.-H. Jiang, Y.-Z. Liang, Y. Ozaki, Chemom. Intell. Lab. Syst. 65
(2003) 51.

[26] H. Gampp, M. Maeder, C.J. Meyer, A.D. Zuberbuhler, Talanta 32
(1985) 1133.

[27] M. Maeder, Anal. Chem. 59 (1987) 527.

[28] E.R. Malinowski, J. Chemom. 6 (1992) 29.

[29] W. Den, E.R. Malinowski, J. Chemom. 7 (1993) 89.

[30] O.M. Kvalheim, Y.-Z. Liang, Anal. Chem. 64 (1992) 936.

[31] Y.-Z. Liang, O.M. Kvalheim, H.R. Keller, D.L. Massart, P. Kiechle,
F. Erni, Anal. Chem. 64 (1992) 946.

[32] R. Manne, H. Shen, Y. Liang, Chemom. Intell. Lab. Syst. 45 (1999)
171.

[33] H. Shen, R. Manne, Q. Xu, D. Chen, Y. Liang, Chemom. Intell. Lab.
Syst. 45 (1999) 323.

[34] J.-H. Jiang, S. Sasic, R.-Q. Yu, Y. Ozaki, J. Chemom. 17 (2003)
186.

[35] E.R. Malinowski, J. Chemom. 10 (1996) 273.

[36] R. Manne, B.-V. Grande, Chemom. Intell. Lab. Syst. 50 (2000) 35.

[37] G.A. Morris, R. Freeman, J. Magn. Reson. 29 (1978) 433.

[38] http://www.ub.es/gesqg/mcr/ntheory.htm.

[39] http://personal.ecu.edu/gemperlinep/.

[40] P.J. Gemperline, E. Cash, Anal. Chem. 75 (2003) 4236.

[41] J.C. Hoch, A.S. Stern, NMR Data Processing, Wiley, New York,
1996.

[42] B.G.M. Vandeginste, D.L. Massart, L.M.C. Buydens, S.D. Jong, P.J.
Lewi, J. Smeyers-Verbeke, Handbook of Chemometrics and Quali-
metrics, Part B, Elsevier, Amsterdam, 2003.

[43] H.R. Keller, D.L. Massart, Anal. Chim. Acta 246 (1991) 379.

[44] S. Wold, K. Esbensen, P. Geladi, Chemom. Intell. Lab. Syst. 2 (1987)
37.

[45] R.G. Brereton, Chemometrics: Data Analysis for the Laboratory and
Chemical Plant, Wiley, Chichester, 2003.

[46] W. Windig, J. Guilment, Anal. Chem. 63 (1991) 1425.

[47] E.R. Malinowski, Anal. Chim. Acta 134 (1982) 129.

[48] K.J. Schostack, E.R. Malinowski, Chemom. Intell. Lab. Syst. 6
(1989) 21.

[49] F.C. Sanchez, M.S. Khots, D.L. Massart, J.0. De Beer, Anal. Chim.
Acta 285 (1994) 181.

[50] F.C. Sanchez, M.S. Khots, D.L. Massart, Anal. Chim. Acta 290
(1994) 249.

[51] F.C. Sanchez, J. Toft, B. van den Bogaert, D.L. Massart, Anal. Chem.
68 (1996) 79.

[52] F.C. Sanchez, B.G.M. Vandeginste, T.M. Hancewicz, D.L. Massart,
Anal. Chem. 69 (1997) 1477.

[53] R. Tauler, D. Barcelo, Trends Anal. Chem. 12 (1993) 319.

[54] F.C. Sanchez, S.C. Rutan, M.D. Gil Garcia, D.L. Massart, Chemom.
Intell. Lab. Syst. 36 (1997) 153.

[55] B.-V. Grande, R. Manne, Chemom. Intell. Lab. Syst. 50 (2000) 19.

[56] G. Strang, Linear Algebra and its Applications, third ed., Harcourt
Brace Jovanovich, Orlando, 1998.

[57] C.L. Lawson, R.J. Hanson, Solving Least Squares Problems,
Prentice-Hall, Englewood Cliffs, NJ, 1974.



M. Wasim, R.G. Brereton / J. Chromatogr. A 1096 (2005) 2—15 15

[58] S. Navea, A. de Juan, R. Tauler, Anal. Chem. 74 (2002) 6031. [65] J. Toft, O.M. Kvalheim, Chemom. Intell. Lab. Syst. 25 (1994) 61.
[59] E. Teixido, L. Olivella, M. Figueras, A. Ginebreda, R. Tauler, J. [66] M. Esteban, C. Arino, J.M. Diaz-Cruz, M.S. Diaz-Cruz, R. Tauler,
Environ. Anal. Chem. 81 (2001) 295. Trends Anal. Chem. 19 (2000) 49.
[60] J. Saurina, S.H. Cassou, A.l. Ridorsa, R. Tauler, Chemom. Intell. [67] P.J. Gemperline, J.C. Hamilton, J. Chemom. 3 (1989) 455.
Lab. Syst. 50 (2000) 263. [68] H. Shen, B. Grung, O.M. Kvalheim, I. Eide, Anal. Chim. Acta 446
[61] A.K. Smilde, R. Tauler, H.M. Henshaw, L.W. Burgess, B.R. Kowal- (2001) 313.
ski, Anal. Chem. 66 (1994) 3345. [69] S.A. Mjos, Anal. Chim. Acta 488 (2003) 231.
[62] B.H. Cruz, J.M. Diaz, C. Arino, M. Estebam, R. Tauler, Analyst 127 [70] H. Shen, L. Stordrange, R. Manne, O.M. Kvalheim, Y.-Z. Liang,
(2002) 401. Chemom. Intell. Lab. Syst. 50 (2000) 37.
[63] A. de Juan, B. Van den Bogaert, F.C. Sanchez, D.L. Massart, [71] N.R. Draper, H. Smith, Applied Regression Analysis, third ed., John
Chemom. Intell. Lab. Syst. 33 (1996) 133. Wiley & Sons, New York, 1998.

[64] H.H. Harman, Modern Factor Analysis, The University of Chicago [72] S. Gourvenec, D.L. Massart, D.N. Rutledge, Chemom. Intell. Lab.
Press, Chicago, 1968, pp. 304-313. Syst. 61 (2002) 51.



	Application of multivariate curve resolution methods to on-flow LC-NMR
	Introduction
	Experimental
	Chromatography
	Spectroscopy
	Software

	Data analysis
	Preprocessing
	Curve resolution
	Non-iterative methods
	Determination of local rank or elution windows
	Resolution

	Iterative methods
	Selection of key variables
	Resolution

	Hybrid methods
	Automatic window factor analysis (AUTOWFA)
	Gentle
	Constrained key variable regression (CKVR)
	Modified constrained key variable regression (MCKVR)



	Results and discussions
	Determination of pure concentration profiles from the whole data matrix
	Selection of NMR peak clusters
	Determination of pure concentration profiles and rank using NMR peak clusters

	Curve resolution methods
	Non-iterative methods
	EFA
	SFA

	Iterative methods
	ALS
	ITTFA

	Hybrid methods
	AUTOWFA
	Gentle
	CKVR
	MCKVR



	Conclusions
	Nomenclature
	Acknowledgements
	References


